Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Practical and Fast Momentum-Based Power Methods (2108.09264v1)

Published 20 Aug 2021 in cs.LG, cs.NA, and math.NA

Abstract: The power method is a classical algorithm with broad applications in machine learning tasks, including streaming PCA, spectral clustering, and low-rank matrix approximation. The distilled purpose of the vanilla power method is to determine the largest eigenvalue (in absolute modulus) and its eigenvector of a matrix. A momentum-based scheme can be used to accelerate the power method, but achieving an optimal convergence rate with existing algorithms critically relies on additional spectral information that is unavailable at run-time, and sub-optimal initializations can result in divergence. In this paper, we provide a pair of novel momentum-based power methods, which we call the delayed momentum power method (DMPower) and a streaming variant, the delayed momentum streaming method (DMStream). Our methods leverage inexact deflation and are capable of achieving near-optimal convergence with far less restrictive hyperparameter requirements. We provide convergence analyses for both algorithms through the lens of perturbation theory. Further, we experimentally demonstrate that DMPower routinely outperforms the vanilla power method and that both algorithms match the convergence speed of an oracle running existing accelerated methods with perfect spectral knowledge.

Citations (1)

Summary

We haven't generated a summary for this paper yet.