Papers
Topics
Authors
Recent
2000 character limit reached

A Neural Conversation Generation Model via Equivalent Shared Memory Investigation

Published 20 Aug 2021 in cs.CL | (2108.09164v1)

Abstract: Conversation generation as a challenging task in Natural Language Generation (NLG) has been increasingly attracting attention over the last years. A number of recent works adopted sequence-to-sequence structures along with external knowledge, which successfully enhanced the quality of generated conversations. Nevertheless, few works utilized the knowledge extracted from similar conversations for utterance generation. Taking conversations in customer service and court debate domains as examples, it is evident that essential entities/phrases, as well as their associated logic and inter-relationships can be extracted and borrowed from similar conversation instances. Such information could provide useful signals for improving conversation generation. In this paper, we propose a novel reading and memory framework called Deep Reading Memory Network (DRMN) which is capable of remembering useful information of similar conversations for improving utterance generation. We apply our model to two large-scale conversation datasets of justice and e-commerce fields. Experiments prove that the proposed model outperforms the state-of-the-art approaches.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.