Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IT2CFNN: An Interval Type-2 Correlation-Aware Fuzzy Neural Network to Construct Non-Separable Fuzzy Rules with Uncertain and Adaptive Shapes for Nonlinear Function Approximation (2108.08704v2)

Published 11 Aug 2021 in cs.LG and cs.AI

Abstract: In this paper, a new interval type-2 fuzzy neural network able to construct non-separable fuzzy rules with adaptive shapes is introduced. To reflect the uncertainty, the shape of fuzzy sets considered to be uncertain. Therefore, a new form of interval type-2 fuzzy sets based on a general Gaussian model able to construct different shapes (including triangular, bell-shaped, trapezoidal) is proposed. To consider the interactions among input variables, input vectors are transformed to new feature spaces with uncorrelated variables proper for defining each fuzzy rule. Next, the new features are fed to a fuzzification layer using proposed interval type-2 fuzzy sets with adaptive shape. Consequently, interval type-2 non-separable fuzzy rules with proper shapes, considering the local interactions of variables and the uncertainty are formed. For type reduction the contribution of the upper and lower firing strengths of each fuzzy rule are adaptively selected separately. To train different parameters of the network, the Levenberg-Marquadt optimization method is utilized. The performance of the proposed method is investigated on clean and noisy datasets to show the ability to consider the uncertainty. Moreover, the proposed paradigm, is successfully applied to real-world time-series predictions, regression problems, and nonlinear system identification. According to the experimental results, the performance of our proposed model outperforms other methods with a more parsimonious structure.

Citations (16)

Summary

We haven't generated a summary for this paper yet.