Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel method in solving seepage problems implementation in Abaqus based on the polygonal scaled boundary finite element method (2108.08434v1)

Published 19 Aug 2021 in math.NA and cs.NA

Abstract: The scaled boundary finite element method (SBFEM) is a semi-analytical computational scheme, which is based on the characteristics of the finite element method (FEM) and combines the advantages of the boundary element method (BEM). This paper integrates the scaled boundary finite element method (SBFEM) and the polygonal mesh technique into a new approach to solving the steady-state and transient seepage problems. The proposed method is implemented in Abaqus using a user-defined element (UEL). The detailed implementations of the procedure, defining the UEL element, updating the RHS and AMATRX, and solving the stiffness/mass matrix by the eigenvalue decomposition are presented. Several benchmark problems from seepage are solved to validate the proposed implementation. Results show that the polygonal element of PS-SBFEM has a higher accuracy rate than the standard FEM element in the same element size. For the transient problems, the results between PS-SBFEM and the FEM are in excellent agreement. Furthermore, the PS-SBFEM with quadtree meshes shows a good effect for solving complex geometric in the seepage problem. Hence, the proposed method is robust accurate for solving the steady-state and transient seepage problems. The developed UEL source code and the associated input files can be downloaded from https://github.com/yangyLab/PS-SBFEM.

Citations (2)

Summary

We haven't generated a summary for this paper yet.