Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Invariance of the Dirichlet series kernels, Analytic symbols and Homogeneous operators (2108.08096v3)

Published 18 Aug 2021 in math.FA

Abstract: For a scalar matrix $\mathbf a=(a_{m, n}){m, n=1}{\infty},$ the Dirichlet series kernel $\kappa{\mathbf a}$ is the double Dirichlet series $\kappa_{\mathbf a}(s, u) = \sum_{m, n =1}{\infty} a_{m, n}m{-s} n{-\bar{u}}$ in the variables $s$ and $\bar{u},$ which is regularly convergent on some right half-plane $\mathbb H_\rho.$ The analytic symbols $A_{n, \mathbf a} = \sum_{m=1}{\infty}a_{m, n}m{-s},$ $n \geq 1$ play a central role in the study of the reproducing kernel Hilbert space $\mathscr H_{\mathbf a}$ associated with the positive semi-definite kernel $\kappa_{\mathbf a}.$ In particular, they form a total subset of $\mathscr H_{\mathbf a}$ and provide the formula $\sum_{n=1}{\infty}\langle f, A_{n, \mathbf a} \rangle n{-s},$ $s \in \mathbb H_\rho,$ for $f \in \mathscr H_{\mathbf a}.$ We combine the basic theory of Dirichlet series kernels with the Gelfond-Schneider theorem (Hilbert's seventh problem) to show that any quasi-invariant Dirichlet series kernel $\kappa_{\mathbf a}(s, u)$ factors as $f(s)\bar{f(u)}$ for some Dirichlet series $f$ on $\mathbb H_\rho.$ In particular, there is no quasi-invariant Dirichlet series kernel $\kappa_{\mathbf a}$ if the dimension of $\mathscr H_{\mathbf a}$ is bigger than one. This is in strict contrast with the case of the unit disc, where non-factorable quasi-invariant kernels exist in abundance. We further discuss the Dirichlet series kernels $\kappa_{\mathbf a}$ invariant under the group $\mathscr T$ of translation automorphisms of $\mathbb H_\rho$ and construct a family of densely defined $\mathscr T$-homogeneous operators in $\mathscr H_{\mathbf a},$ whose adjoints are defined only at the zero vector.

Summary

We haven't generated a summary for this paper yet.