On balanced sequences and their critical exponent
Abstract: We study aperiodic balanced sequences over finite alphabets. A sequence vv of this type is fully characterised by a Sturmian sequence u and two constant gap sequences y and y'. We show that the language of v is eventually dendric and we focus on return words to its factors. We develop a method for computing the critical exponent and asymptotic critical exponent of balanced sequences, provided the associated Sturmian sequence u has a quadratic slope. The method is based on looking for the shortest return words to bispecial factors in v. We illustrate our method on several examples; in particular we confirm a conjecture of Rampersad, Shallit and Vandomme that two specific sequences have the least critical exponent among all balanced sequences over 9-letter (resp., $0-letter) alphabets.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.