Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Emergence of Wireless MAC Protocols with Multi-Agent Reinforcement Learning (2108.07144v2)

Published 16 Aug 2021 in cs.IT, cs.AI, and math.IT

Abstract: In this paper, we propose a new framework, exploiting the multi-agent deep deterministic policy gradient (MADDPG) algorithm, to enable a base station (BS) and user equipment (UE) to come up with a medium access control (MAC) protocol in a multiple access scenario. In this framework, the BS and UEs are reinforcement learning (RL) agents that need to learn to cooperate in order to deliver data. The network nodes can exchange control messages to collaborate and deliver data across the network, but without any prior agreement on the meaning of the control messages. In such a framework, the agents have to learn not only the channel access policy, but also the signaling policy. The collaboration between agents is shown to be important, by comparing the proposed algorithm to ablated versions where either the communication between agents or the central critic is removed. The comparison with a contention-free baseline shows that our framework achieves a superior performance in terms of goodput and can effectively be used to learn a new protocol.

Citations (34)

Summary

We haven't generated a summary for this paper yet.