Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz regularity of energy-minimal mappings between doubly connected Riemann surfaces (2108.06787v1)

Published 15 Aug 2021 in math.DG and math.CV

Abstract: Let $M$ and $N$ be doubly connected Riemann surfaces with $\mathscr{C}{1,\alpha}$ boundaries and with nonvanishing conformal metrics $\sigma$ and $\wp$ respectively, and assume that $\wp$ is a smooth metric with bounded Gauss curvature $\mathcal{K}$ and finite area. Assume that ${\Ho}\rho(M, N)$ is the class of all $\mathscr{W}{1,2}$ bomeomorphisms between $M$ and $N$ and assume that $\mathcal{E}\wp: \overline{\Ho}\rho(M, N)\to \mathbf{R}$ is the Dirichlet-energy functional, where $\overline{\Ho}\rho(M, N)$ is the closure of ${\Ho}\rho(M, N)$ in $\mathscr{W}{1,2}(M,N)$. By using a result of Iwaniec, Kovalev and Onninen in \cite{duke} that the minimizer, is locally Lipschitz, we prove that the minimizer, of the energy functional $\mathcal{E}\wp$, which is not a diffeomorphism in general, is a globally Lipschitz mapping of $M$ onto $N$.

Summary

We haven't generated a summary for this paper yet.