Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RLIBM-ALL: A Novel Polynomial Approximation Method to Produce Correctly Rounded Results for Multiple Representations and Rounding Modes (2108.06756v2)

Published 15 Aug 2021 in cs.MS

Abstract: Mainstream math libraries for floating point (FP) do not produce correctly rounded results for all inputs. In contrast, CR-LIBM and RLIBM provide correctly rounded implementations for a specific FP representation with one rounding mode. Using such libraries for a representation with a new rounding mode or with different precision will result in wrong results due to double rounding. This paper proposes a novel method to generate a single polynomial approximation that produces correctly rounded results for all inputs for multiple rounding modes and multiple precision configurations. To generate a correctly rounded library for $n$-bits, our key idea is to generate such a polynomial approximation for a representation with $n+2$-bits using the \emph{round-to-odd} mode. We prove that the resulting polynomial approximation will produce correctly rounded results for all five rounding modes in the standard and for multiple representations with $k$-bits such that $|E| +1 < k \leq n$, where $|E|$ is the number of exponent bits in the representation. Building on our prior work in the RLIBM project, we also approximate the correctly rounded result when we generate the library with $n+2$-bits using the round-to-odd mode. We also generate polynomial approximations by structuring it as a linear programming problem but propose enhancements to polynomial generation to handle the round-to-odd mode. Our prototype is the first 32-bit float library that produces correctly rounded results with all rounding modes in the IEEE standard for all inputs with a single polynomial approximation. It also produces correctly rounded results for any FP configuration ranging from 10-bits to 32-bits while also being faster than mainstream libraries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.