Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvalues of random matrices with generalised correlations: a path integral approach (2108.06225v1)

Published 13 Aug 2021 in cond-mat.dis-nn and cond-mat.stat-mech

Abstract: Random matrix theory allows one to deduce the eigenvalue spectrum of a large matrix given only statistical information about its elements. Such results provide insight into what factors contribute to the stability of complex dynamical systems. In this letter, we study the eigenvalue spectrum of an ensemble of random matrices with correlations between any pair of elements. To this end, we introduce an analytical method that maps the resolvent of the random matrix onto the response functions of a linear dynamical system. The response functions are then evaluated using a path integral formalism, enabling us to make deductions about the eigenvalue spectrum. Our central result is a simple, closed-form expression for the leading eigenvalue of a large random matrix with generalised correlations. This formula demonstrates that correlations between matrix elements that are not diagonally opposite, which are often neglected, can have a significant impact on stability.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com