Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fréchet single index models for object response regression (2108.06058v2)

Published 13 Aug 2021 in stat.ME

Abstract: With the increasing availability of non-Euclidean data objects, statisticians are faced with the task of developing appropriate statistical methods for their analysis. For regression models in which the predictors lie in $\mathbb{R}p$ and the response variables are situated in a metric space, conditional Fr\'echet means can be used to define the Fr\'echet regression function. Global and local Fr\'echet methods have recently been developed for modeling and estimating this regression function as extensions of multiple and local linear regression, respectively. This paper expands on these methodologies by proposing the Fr\'echet Single Index model, in which the Fr\'echet regression function is assumed to depend only on a scalar projection of the multivariate predictor. Estimation is performed by combining local Fr\'echet along with M-estimation to estimate both the coefficient vector and the underlying regression function, and these estimators are shown to be consistent. The method is illustrated by simulations for response objects on the surface of the unit sphere and through an analysis of human mortality data in which lifetable data are represented by distributions of age-of-death, viewed as elements of the Wasserstein space of distributions.

Summary

We haven't generated a summary for this paper yet.