Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation properties of the double Fourier sphere method (2108.05662v1)

Published 12 Aug 2021 in math.NA, cs.NA, and math.FA

Abstract: We investigate analytic properties of the double Fourier sphere (DFS) method, which transforms a function defined on the two-dimensional sphere to a function defined on the two-dimensional torus. Then the resulting function can be written as a Fourier series yielding an approximation of the original function. We show that the DFS method preserves smoothness: it continuously maps spherical H\"older spaces into the respective spaces on the torus, but it does not preserve spherical Sobolev spaces in the same manner. Furthermore, we prove sufficient conditions for the absolute convergence of the resulting series expansion on the sphere as well as results on the speed of convergence.

Citations (5)

Summary

We haven't generated a summary for this paper yet.