Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilling Holistic Knowledge with Graph Neural Networks (2108.05507v1)

Published 12 Aug 2021 in cs.CV

Abstract: Knowledge Distillation (KD) aims at transferring knowledge from a larger well-optimized teacher network to a smaller learnable student network.Existing KD methods have mainly considered two types of knowledge, namely the individual knowledge and the relational knowledge. However, these two types of knowledge are usually modeled independently while the inherent correlations between them are largely ignored. It is critical for sufficient student network learning to integrate both individual knowledge and relational knowledge while reserving their inherent correlation. In this paper, we propose to distill the novel holistic knowledge based on an attributed graph constructed among instances. The holistic knowledge is represented as a unified graph-based embedding by aggregating individual knowledge from relational neighborhood samples with graph neural networks, the student network is learned by distilling the holistic knowledge in a contrastive manner. Extensive experiments and ablation studies are conducted on benchmark datasets, the results demonstrate the effectiveness of the proposed method. The code has been published in https://github.com/wyc-ruiker/HKD

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com