Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameters Fixing Strategy for Quantum Approximate Optimization Algorithm (2108.05288v1)

Published 11 Aug 2021 in quant-ph

Abstract: The quantum approximate optimization algorithm (QAOA) has numerous promising applications in solving the combinatorial optimization problems on near-term Noisy Intermediate Scalable Quantum (NISQ) devices. QAOA has a quantum-classical hybrid structure. Its quantum part consists of a parameterized alternating operator ansatz, and its classical part comprises an optimization algorithm, which optimizes the parameters to maximize the expectation value of the problem Hamiltonian. This expectation value depends highly on the parameters, this implies that a set of good parameters leads to an accurate solution. However, at large circuit depth of QAOA, it is difficult to achieve global optimization due to the multiple occurrences of local minima or maxima. In this paper, we propose a parameters fixing strategy which gives high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths. We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd\"{o}s-R\'{e}nyi graphs.

Summary

We haven't generated a summary for this paper yet.