Papers
Topics
Authors
Recent
2000 character limit reached

Position-based Contributive Embeddings for Aspect-Based Sentiment Analysis

Published 11 Aug 2021 in cs.CL | (2108.05098v2)

Abstract: Aspect-based sentiment analysis (ABSA), exploring sentiment polarity of aspect-given sentence, is a fine-grained task in the field of nature language processing. Previously researches typically tend to predict polarity based on the meaning of aspect and opinions. However, those approaches mainly focus on considering relations implicitly at the word level, ignore the historical impact of other positional words when the aspect appears in a certain position. Therefore, we propose a Position-based Contributive Embeddings (PosCE) to highlight the historical reference to special position aspect. Contribution of each positional words to the polarity is similar to the process of fairly distributing gains to several actors working in coalition (game theory). Therefore, we quote from the method of Shapley Value and finally gain PosCE to enhance the aspect-based representation for ABSA task. Furthermore, the PosCE can also be used for improving performances on multimodal ABSA task. Extensive experiments on both text and text-audio level using SemEval dataset show that the mainstream models advance performance in accuracy and F1 (increase 2.82% and 4.21% on average respectively) by applying our PosCE.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.