Papers
Topics
Authors
Recent
Search
2000 character limit reached

NI-UDA: Graph Adversarial Domain Adaptation from Non-shared-and-Imbalanced Big Data to Small Imbalanced Applications

Published 11 Aug 2021 in cs.CV and cs.AI | (2108.05061v2)

Abstract: We propose a new general Graph Adversarial Domain Adaptation (GADA) based on semantic knowledge reasoning of class structure for solving the problem of unsupervised domain adaptation (UDA) from the big data with non-shared and imbalanced classes to specified small and imbalanced applications (NI-UDA), where non-shared classes mean the label space out of the target domain. Our goal is to leverage priori hierarchy knowledge to enhance domain adversarial aligned feature representation with graph reasoning. In this paper, to address two challenges in NI-UDA, we equip adversarial domain adaptation with Hierarchy Graph Reasoning (HGR) layer and the Source Classifier Filter (SCF). For sparse classes transfer challenge, our HGR layer can aggregate local feature to hierarchy graph nodes by node prediction and enhance domain adversarial aligned feature with hierarchy graph reasoning for sparse classes. Our HGR contributes to learn direct semantic patterns for sparse classes by hierarchy attention in self-attention, non-linear mapping and graph normalization. our SCF is proposed for the challenge of knowledge sharing from non-shared data without negative transfer effect by filtering low-confidence non-shared data in HGR layer. Experiments on two benchmark datasets show our GADA methods consistently improve the state-of-the-art adversarial UDA algorithms, e.g. GADA(HGR) can greatly improve f1 of the MDD by \textbf{7.19\%} and GVB-GD by \textbf{7.89\%} respectively on imbalanced source task in Meal300 dataset. The code is available at https://gadatransfer.wixsite.com/gada.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.