Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Influence with Graph Neural Networks (2108.04623v7)

Published 10 Aug 2021 in cs.LG, cs.AI, and cs.SI

Abstract: Finding the seed set that maximizes the influence spread over a network is a well-known NP-hard problem. Though a greedy algorithm can provide near-optimal solutions, the subproblem of influence estimation renders the solutions inefficient. In this work, we propose \textsc{Glie}, a graph neural network that learns how to estimate the influence spread of the independent cascade. \textsc{Glie} relies on a theoretical upper bound that is tightened through supervised training. Experiments indicate that it provides accurate influence estimation for real graphs up to 10 times larger than the train set. Subsequently, we incorporate it into two influence maximization techniques. We first utilize Cost Effective Lazy Forward optimization substituting Monte Carlo simulations with \textsc{Glie}, surpassing the benchmarks albeit with a computational overhead. To improve computational efficiency we develop a provably submodular influence spread based on \textsc{Glie}'s representations, to rank nodes while building the seed set adaptively. The proposed algorithms are inductive, meaning they are trained on graphs with less than 300 nodes and up to 5 seeds, and tested on graphs with millions of nodes and up to 200 seeds. The final method exhibits the most promising combination of time efficiency and influence quality, outperforming several baselines.

Citations (7)

Summary

We haven't generated a summary for this paper yet.