Papers
Topics
Authors
Recent
Search
2000 character limit reached

Test of Significance for High-dimensional Thresholds with Application to Individualized Minimal Clinically Important Difference

Published 9 Aug 2021 in stat.ME, math.ST, and stat.TH | (2108.04306v2)

Abstract: This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical problem where the parameter of interest lies in an individualized linear threshold. The goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.