Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Distillation for Better Uncertainty Estimates in Multitask Emotion Recognition (2108.04228v2)

Published 21 Jul 2021 in cs.CV and cs.LG

Abstract: When recognizing emotions, subtle nuances in displays of emotion generate ambiguity or uncertainty in emotion perception. Emotion uncertainty has been previously interpreted as inter-rater disagreement among multiple annotators. In this paper, we consider a more common and challenging scenario: modeling emotion uncertainty when only single emotion labels are available. From a Bayesian perspective, we propose to use deep ensembles to capture uncertainty for multiple emotion descriptors, i.e., action units, discrete expression labels and continuous descriptors. We further apply iterative self-distillation. Iterative distillation over multiple generations significantly improves performance in both emotion recognition and uncertainty estimation. Our method generates single student models that provide accurate estimates of uncertainty for in-domain samples and a student ensemble that can detect out-of-domain samples. Our experiments on emotion recognition and uncertainty estimation using the Aff-wild2 dataset demonstrate that our algorithm gives more reliable uncertainty estimates than both Temperature Scaling and Monte Carol Dropout.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Didan Deng (9 papers)
  2. Liang Wu (138 papers)
  3. Bertram E. Shi (28 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.