Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Discriminative Representation Learning for Unsupervised Person Re-identification (2108.03439v2)

Published 7 Aug 2021 in cs.CV and cs.AI

Abstract: In this work, we address the problem of unsupervised domain adaptation for person re-ID where annotations are available for the source domain but not for target. Previous methods typically follow a two-stage optimization pipeline, where the network is first pre-trained on source and then fine-tuned on target with pseudo labels created by feature clustering. Such methods sustain two main limitations. (1) The label noise may hinder the learning of discriminative features for recognizing target classes. (2) The domain gap may hinder knowledge transferring from source to target. We propose three types of technical schemes to alleviate these issues. First, we propose a cluster-wise contrastive learning algorithm (CCL) by iterative optimization of feature learning and cluster refinery to learn noise-tolerant representations in the unsupervised manner. Second, we adopt a progressive domain adaptation (PDA) strategy to gradually mitigate the domain gap between source and target data. Third, we propose Fourier augmentation (FA) for further maximizing the class separability of re-ID models by imposing extra constraints in the Fourier space. We observe that these proposed schemes are capable of facilitating the learning of discriminative feature representations. Experiments demonstrate that our method consistently achieves notable improvements over the state-of-the-art unsupervised re-ID methods on multiple benchmarks, e.g., surpassing MMT largely by 8.1\%, 9.9\%, 11.4\% and 11.1\% mAP on the Market-to-Duke, Duke-to-Market, Market-to-MSMT and Duke-to-MSMT tasks, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Takashi Isobe (12 papers)
  2. Dong Li (429 papers)
  3. Lu Tian (58 papers)
  4. Weihua Chen (35 papers)
  5. Yi Shan (17 papers)
  6. Shengjin Wang (65 papers)
Citations (58)