Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operational Learning-based Boundary Estimation in Electromagnetic Medical Imaging (2108.03233v1)

Published 4 Aug 2021 in cs.CV and cs.LG

Abstract: Incorporating boundaries of the imaging object as a priori information to imaging algorithms can significantly improve the performance of electromagnetic medical imaging systems. To avoid overly complicating the system by using different sensors and the adverse effect of the subject's movement, a learning-based method is proposed to estimate the boundary (external contour) of the imaged object using the same electromagnetic imaging data. While imaging techniques may discard the reflection coefficients for being dominant and uninformative for imaging, these parameters are made use of for boundary detection. The learned model is verified through independent clinical human trials by using a head imaging system with a 16-element antenna array that works across the band 0.7-1.6 GHz. The evaluation demonstrated that the model achieves average dissimilarity of 0.012 in Hu-moment while detecting head boundary. The model enables fast scan and image creation while eliminating the need for additional devices for accurate boundary estimation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.