Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hate Speech Detection in Roman Urdu (2108.02830v1)

Published 5 Aug 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Hate speech is a specific type of controversial content that is widely legislated as a crime that must be identified and blocked. However, due to the sheer volume and velocity of the Twitter data stream, hate speech detection cannot be performed manually. To address this issue, several studies have been conducted for hate speech detection in European languages, whereas little attention has been paid to low-resource South Asian languages, making the social media vulnerable for millions of users. In particular, to the best of our knowledge, no study has been conducted for hate speech detection in Roman Urdu text, which is widely used in the sub-continent. In this study, we have scrapped more than 90,000 tweets and manually parsed them to identify 5,000 Roman Urdu tweets. Subsequently, we have employed an iterative approach to develop guidelines and used them for generating the Hate Speech Roman Urdu 2020 corpus. The tweets in the this corpus are classified at three levels: Neutral-Hostile, Simple-Complex, and Offensive-Hate speech. As another contribution, we have used five supervised learning techniques, including a deep learning technique, to evaluate and compare their effectiveness for hate speech detection. The results show that Logistic Regression outperformed all other techniques, including deep learning techniques for the two levels of classification, by achieved an F1 score of 0.906 for distinguishing between Neutral-Hostile tweets, and 0.756 for distinguishing between Offensive-Hate speech tweets.

Citations (48)

Summary

We haven't generated a summary for this paper yet.