Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evacuating from ell_p Unit Disks in the Wireless Model (2108.02367v1)

Published 5 Aug 2021 in cs.DM and cs.DS

Abstract: The search-type problem of evacuating 2 robots in the wireless model from the (Euclidean) unit disk was first introduced and studied by Czyzowicz et al. [DISC'2014]. Since then, the problem has seen a long list of follow-up results pertaining to variations as well as to upper and lower bound improvements. All established results in the area study this 2-dimensional search-type problem in the Euclidean metric space where the search space, i.e. the unit disk, enjoys significant (metric) symmetries. We initiate and study the problem of evacuating 2 robots in the wireless model from $\ell_p$ unit disks, $p \in [1,\infty)$, where in particular robots' moves are measured in the underlying metric space. To the best of our knowledge, this is the first study of a search-type problem with mobile agents in more general metric spaces. The problem is particularly challenging since even the circumference of the $\ell_p$ unit disks have been the subject of technical studies. In our main result, and after identifying and utilizing the very few symmetries of $\ell_p$ unit disks, we design \emph{optimal evacuation algorithms} that vary with $p$. Our main technical contributions are two-fold. First, in our upper bound results, we provide (nearly) closed formulae for the worst case cost of our algorithms. Second, and most importantly, our lower bounds' arguments reduce to a novel observation in convex geometry which analyzes trade-offs between arc and chord lengths of $\ell_p$ unit disks as the endpoints of the arcs (chords) change position around the perimeter of the disk, which we believe is interesting in its own right. Part of our argument pertaining to the latter property relies on a computer assisted numerical verification that can be done for non-extreme values of $p$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.