2000 character limit reached
Extreme values of derivatives of the Riemann zeta function (2108.02301v1)
Published 4 Aug 2021 in math.NT
Abstract: It is proved that if $T$ is sufficiently large, then uniformly for all positive integers $\ell \leqslant (\log T) / (\log_2 T)$, we have \begin{equation*} \max_{T\leqslant t\leqslant 2T}\left|\zeta{(\ell)}\Big(1+it\Big)\right| \geqslant e{\gamma}\cdot \ell{\ell}\cdot (\ell+1){ -(\ell+1)}\cdot\Big(\log_2 T - \log_3 T + O(1)\Big){\ell+1} \,, \end{equation*} where $\gamma$ is the Euler constant. We also establish lower bounds for maximum of $\big|\zeta{(\ell)}(\sigma+it)\big|$ when $\ell \in \mathbb N $ and $\sigma \in [1/2, \,1)$ are fixed.