Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On simulation of rough Volterra stochastic volatility models (2108.01999v2)

Published 26 Jul 2021 in q-fin.CP and q-fin.PR

Abstract: Rough Volterra volatility models are a progressive and promising field of research in derivative pricing. Although rough fractional stochastic volatility models already proved to be superior in real market data fitting, techniques used in simulation of these models are still inefficient in terms of speed and accuracy. This paper aims to present accurate and efficient tools and techniques for Monte-Carlo simulations for a wide range of rough volatility models. In particular, we compare three commonly used simulation methods: the Cholesky method, the Hybrid scheme, and the rDonsker scheme. We also comment on the implementation of variance reduction techniques. In particular, we show the obstacles of the so-called turbocharging technique whose performance is sometimes counter-productive. To overcome these obstacles, we suggest several modifications.

Summary

We haven't generated a summary for this paper yet.