Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skeleton Cloud Colorization for Unsupervised 3D Action Representation Learning (2108.01959v3)

Published 4 Aug 2021 in cs.CV

Abstract: Skeleton-based human action recognition has attracted increasing attention in recent years. However, most of the existing works focus on supervised learning which requiring a large number of annotated action sequences that are often expensive to collect. We investigate unsupervised representation learning for skeleton action recognition, and design a novel skeleton cloud colorization technique that is capable of learning skeleton representations from unlabeled skeleton sequence data. Specifically, we represent a skeleton action sequence as a 3D skeleton cloud and colorize each point in the cloud according to its temporal and spatial orders in the original (unannotated) skeleton sequence. Leveraging the colorized skeleton point cloud, we design an auto-encoder framework that can learn spatial-temporal features from the artificial color labels of skeleton joints effectively. We evaluate our skeleton cloud colorization approach with action classifiers trained under different configurations, including unsupervised, semi-supervised and fully-supervised settings. Extensive experiments on NTU RGB+D and NW-UCLA datasets show that the proposed method outperforms existing unsupervised and semi-supervised 3D action recognition methods by large margins, and it achieves competitive performance in supervised 3D action recognition as well.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Siyuan Yang (31 papers)
  2. Jun Liu (606 papers)
  3. Shijian Lu (151 papers)
  4. Meng Hwa Er (3 papers)
  5. Alex C. Kot (77 papers)
Citations (87)

Summary

We haven't generated a summary for this paper yet.