Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Evaluation of End-to-End Polyphonic Optical Music Recognition (2108.01769v1)

Published 3 Aug 2021 in cs.CV, cs.LG, cs.SD, and eess.AS

Abstract: Previous work has shown that neural architectures are able to perform optical music recognition (OMR) on monophonic and homophonic music with high accuracy. However, piano and orchestral scores frequently exhibit polyphonic passages, which add a second dimension to the task. Monophonic and homophonic music can be described as homorhythmic, or having a single musical rhythm. Polyphonic music, on the other hand, can be seen as having multiple rhythmic sequences, or voices, concurrently. We first introduce a workflow for creating large-scale polyphonic datasets suitable for end-to-end recognition from sheet music publicly available on the MuseScore forum. We then propose two novel formulations for end-to-end polyphonic OMR -- one treating the problem as a type of multi-task binary classification, and the other treating it as multi-sequence detection. Building upon the encoder-decoder architecture and an image encoder proposed in past work on end-to-end OMR, we propose two novel decoder models -- FlagDecoder and RNNDecoder -- that correspond to the two formulations. Finally, we compare the empirical performance of these end-to-end approaches to polyphonic OMR and observe a new state-of-the-art performance with our multi-sequence detection decoder, RNNDecoder.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sachinda Edirisooriya (1 paper)
  2. Hao-Wen Dong (31 papers)
  3. Julian McAuley (238 papers)
  4. Taylor Berg-Kirkpatrick (106 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.