Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brane quantization of toric Poisson varieties (2108.01658v1)

Published 3 Aug 2021 in math.DG, hep-th, math-ph, math.MP, and math.SG

Abstract: In this paper we propose a noncommutative generalization of the relationship between compact K\"ahler manifolds and complex projective algebraic varieties. Beginning with a prequantized K\"ahler structure, we use a holomorphic Poisson tensor to deform the underlying complex structure into a generalized complex structure, such that the prequantum line bundle and its tensor powers deform to a sequence of generalized complex branes. Taking homomorphisms between the resulting branes, we obtain a noncommutative deformation of the homogeneous coordinate ring. As a proof of concept, this is implemented for all compact toric K\"ahler manifolds equipped with an R-matrix holomorphic Poisson structure, resulting in what could be called noncommutative toric varieties. To define the homomorphisms between generalized complex branes, we propose a method which involves lifting each pair of generalized complex branes to a single coisotropic A-brane in the real symplectic groupoid of the underlying Poisson structure, and compute morphisms in the A-model between the Lagrangian identity bisection and the lifted coisotropic brane. This is done with the use of a multiplicative holomorphic Lagrangian polarization of the groupoid.

Citations (8)

Summary

We haven't generated a summary for this paper yet.