Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending a Physics-Based Constitutive Model using Genetic Programming (2108.01595v4)

Published 3 Aug 2021 in cs.NE

Abstract: In material science, models are derived to predict emergent material properties (e.g. elasticity, strength, conductivity) and their relations to processing conditions. A major drawback is the calibration of model parameters that depend on processing conditions. Currently, these parameters must be optimized to fit measured data since their relations to processing conditions (e.g. deformation temperature, strain rate) are not fully understood. We present a new approach that identifies the functional dependency of calibration parameters from processing conditions based on genetic programming. We propose two (explicit and implicit) methods to identify these dependencies and generate short interpretable expressions. The approach is used to extend a physics-based constitutive model for deformation processes. This constitutive model operates with internal material variables such as a dislocation density and contains a number of parameters, among them three calibration parameters. The derived expressions extend the constitutive model and replace the calibration parameters. Thus, interpolation between various processing parameters is enabled. Our results show that the implicit method is computationally more expensive than the explicit approach but also produces significantly better results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.