Papers
Topics
Authors
Recent
Search
2000 character limit reached

NudgeCred: Supporting News Credibility Assessment on Social Media Through Nudges

Published 3 Aug 2021 in cs.HC | (2108.01536v2)

Abstract: Struggling to curb misinformation, social media platforms are experimenting with design interventions to enhance consumption of credible news on their platforms. Some of these interventions, such as the use of warning messages, are examples of nudges -- a choice-preserving technique to steer behavior. Despite their application, we do not know whether nudges could steer people into making conscious news credibility judgments online and if they do, under what constraints. To answer, we combine nudge techniques with heuristic based information processing to design NudgeCred -- a browser extension for Twitter. NudgeCred directs users' attention to two design cues: authority of a source and other users' collective opinion on a report by activating three design nudges -- Reliable, Questionable, and Unreliable, each denoting particular levels of credibility for news tweets. In a controlled experiment, we found that NudgeCred significantly helped users (n=430) distinguish news tweets' credibility, unrestricted by three behavioral confounds -- political ideology, political cynicism, and media skepticism. A five-day field deployment with twelve participants revealed that NudgeCred improved their recognition of news items and attention towards all of our nudges, particularly towards Questionable. Among other considerations, participants proposed that designers should incorporate heuristics that users' would trust. Our work informs nudge-based system design approaches for online media.

Citations (45)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.