Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Active User Detection and Channel Estimation for Grant-Free NOMA-OTFS in LEO Constellation Internet-of-Things (2108.01520v1)

Published 3 Aug 2021 in cs.IT, eess.SP, and math.IT

Abstract: The flourishing low-Earth orbit (LEO) constellation communication network provides a promising solution for seamless coverage services to Internet-of-Things (IoT) terminals. However, confronted with massive connectivity and rapid variation of terrestrial-satellite link (TSL), the traditional grant-free random-access schemes always fail to match this scenario. In this paper, a new non-orthogonal multiple-access (NOMA) transmission protocol that incorporates orthogonal time frequency space (OTFS) modulation is proposed to solve these problems. Furthermore, we propose a two-stages joint active user detection and channel estimation scheme based on the training sequences aided OTFS data frame structure. Specifically, in the first stage, with the aid of training sequences, we perform active user detection and coarse channel estimation by recovering the sparse sampled channel vectors. And then, we develop a parametric approach to facilitate more accurate result of channel estimation with the previously recovered sampled channel vectors according to the inherent characteristics of TSL channel. Simulation results demonstrate the superiority of the proposed method in this kind of high-mobility scenario in the end.

Citations (7)

Summary

We haven't generated a summary for this paper yet.