Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Analysis of Physical Reservoir Computers (2108.01512v2)

Published 3 Aug 2021 in cs.LG, cond-mat.dis-nn, cond-mat.other, cond-mat.str-el, and cs.NE

Abstract: Physical reservoir computing is a computational framework that implements spatiotemporal information processing directly within physical systems. By exciting nonlinear dynamical systems and creating linear models from their state, we can create highly energy-efficient devices capable of solving machine learning tasks without building a modular system consisting of millions of neurons interconnected by synapses. To act as an effective reservoir, the chosen dynamical system must have two desirable properties: nonlinearity and memory. We present task agnostic spatial measures to locally measure both of these properties and exemplify them for a specific physical reservoir based upon magnetic skyrmion textures. In contrast to typical reservoir computing metrics, these metrics can be resolved spatially and in parallel from a single input signal, allowing for efficient parameter search to design efficient and high-performance reservoirs. Additionally, we show the natural trade-off between memory capacity and nonlinearity in our reservoir's behaviour, both locally and globally. Finally, by balancing the memory and nonlinearity in a reservoir, we can improve its performance for specific tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.