Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Image Representations for Multi-Image Fusion and Layer Separation (2108.01199v4)

Published 2 Aug 2021 in cs.CV

Abstract: We propose a framework for aligning and fusing multiple images into a single view using neural image representations (NIRs), also known as implicit or coordinate-based neural representations. Our framework targets burst images that exhibit camera ego motion and potential changes in the scene. We describe different strategies for alignment depending on the nature of the scene motion -- namely, perspective planar (i.e., homography), optical flow with minimal scene change, and optical flow with notable occlusion and disocclusion. With the neural image representation, our framework effectively combines multiple inputs into a single canonical view without the need for selecting one of the images as a reference frame. We demonstrate how to use this multi-frame fusion framework for various layer separation tasks. The code and results are available at https://shnnam.github.io/research/nir.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com