2000 character limit reached
On deformed preprojective algebras (2108.00795v3)
Published 2 Aug 2021 in math.RT and math.RA
Abstract: Deformed preprojective algebras are generalizations of the usual preprojective algebras introduced by Crawley-Boevey and Holland, which have applications to Kleinian singularities, the Deligne-Simpson problem, integrable systems and noncommutative geometry. In this paper we offer three contributions to the study of such algebras: (1) the 2-Calabi-Yau property; (2) the unification of the reflection functors of Crawley-Boevey and Holland with reflection functors for the usual preprojective algebras; and (3) the classification of tilting ideals in 2-Calabi-Yau algebras, and especially in deformed preprojective algebras for extended Dynkin quivers.