Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of real trivectors in dimension nine (2108.00790v1)

Published 2 Aug 2021 in math.RT, math.DG, math.GR, and math.RA

Abstract: We classify real trivectors in dimension 9. The corresponding classification over the field C of complex numbers was obtained by Vinberg and Elashvili in 1978. One of the main tools used for their classification was the construction of the representation of SL(9,C) on the space of complex trivectors of C9 as a theta-representation corresponding to a Z/3Z-grading of the simple complex Lie algebra of type E_8. This divides the trivectors into three groups: nilpotent, semisimple, and mixed trivectors. Our classification follows the same pattern. We use Galois cohomology, first and second, to obtain the classification over R.

Summary

We haven't generated a summary for this paper yet.