Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SurpriseNet: Melody Harmonization Conditioning on User-controlled Surprise Contours (2108.00378v2)

Published 1 Aug 2021 in cs.SD, cs.MM, and eess.AS

Abstract: The surprisingness of a song is an essential and seemingly subjective factor in determining whether the listener likes it. With the help of information theory, it can be described as the transition probability of a music sequence modeled as a Markov chain. In this study, we introduce the concept of deriving entropy variations over time, so that the surprise contour of each chord sequence can be extracted. Based on this, we propose a user-controllable framework that uses a conditional variational autoencoder (CVAE) to harmonize the melody based on the given chord surprise indication. Through explicit conditions, the model can randomly generate various and harmonic chord progressions for a melody, and the Spearman's correlation and p-value significance show that the resulting chord progressions match the given surprise contour quite well. The vanilla CVAE model was evaluated in a basic melody harmonization task (no surprise control) in terms of six objective metrics. The results of experiments on the Hooktheory Lead Sheet Dataset show that our model achieves performance comparable to the state-of-the-art melody harmonization model.

Citations (17)

Summary

We haven't generated a summary for this paper yet.