Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor-Train Density Estimation (2108.00089v2)

Published 30 Jul 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Estimation of probability density function from samples is one of the central problems in statistics and machine learning. Modern neural network-based models can learn high dimensional distributions but have problems with hyperparameter selection and are often prone to instabilities during training and inference. We propose a new efficient tensor train-based model for density estimation (TTDE). Such density parametrization allows exact sampling, calculation of cumulative and marginal density functions, and partition function. It also has very intuitive hyperparameters. We develop an efficient non-adversarial training procedure for TTDE based on the Riemannian optimization. Experimental results demonstrate the competitive performance of the proposed method in density estimation and sampling tasks, while TTDE significantly outperforms competitors in training speed.

Citations (31)

Summary

We haven't generated a summary for this paper yet.