Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Head Self-Attention via Vision Transformer for Zero-Shot Learning (2108.00045v1)

Published 30 Jul 2021 in cs.CV and cs.LG

Abstract: Zero-Shot Learning (ZSL) aims to recognise unseen object classes, which are not observed during the training phase. The existing body of works on ZSL mostly relies on pretrained visual features and lacks the explicit attribute localisation mechanism on images. In this work, we propose an attention-based model in the problem settings of ZSL to learn attributes useful for unseen class recognition. Our method uses an attention mechanism adapted from Vision Transformer to capture and learn discriminative attributes by splitting images into small patches. We conduct experiments on three popular ZSL benchmarks (i.e., AWA2, CUB and SUN) and set new state-of-the-art harmonic mean results {on all the three datasets}, which illustrate the effectiveness of our proposed method.

Citations (16)

Summary

We haven't generated a summary for this paper yet.