Papers
Topics
Authors
Recent
Search
2000 character limit reached

On small breathers of nonlinear Klein-Gordon equations via exponentially small homoclinic splitting

Published 30 Jul 2021 in math.AP and math.DS | (2107.14566v3)

Abstract: Breathers are nontrivial time-periodic and spatially localized solutions of nonlinear dispersive partial differential equations (PDEs). Families of breathers have been found for certain integrable PDEs but are believed to be rare in non-integrable ones such as nonlinear Klein-Gordon equations. In this paper we show that small amplitude breathers of \emph{any} temporal frequency do not exist for semilinear Klein-Gordon equations with generic analytic odd nonlinearities. A breather with small amplitude exists only when its temporal frequency is close to be resonant with the linear Klein-Gordon dispersion relation. Our main result is that, for such frequencies, we rigorously identify the leading order term in the exponentially small (with respect to the small amplitude) obstruction to the existence of small breathers in terms of the so-called \emph{Stokes constant}, which depends on the nonlinearity analytically, but is independent of the frequency. This gives a rigorous justification of a formal asymptotic argument by Kruskal and Segur \cite{KS87} in the analysis of small breathers. We rely on the spatial dynamics approach where breathers can be seen as homoclinic orbits. The birth of such small homoclinics is analyzed via a singular perturbation setting where a Bogdanov-Takens type bifurcation is coupled to infinitely many rapidly oscillatory directions. The leading order term of the exponentially small splitting between the stable/unstable invariant manifolds is obtained through a careful analysis of the analytic continuation of their parameterizations. This requires the study of another limit equation in the complexified evolution variable, the so-called \emph{inner equation}.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.