Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind Faith: Privacy-Preserving Machine Learning using Function Approximation (2107.14338v1)

Published 29 Jul 2021 in cs.CR

Abstract: Over the past few years, a tremendous growth of machine learning was brought about by a significant increase in adoption of cloud-based services. As a result, various solutions have been proposed in which the machine learning models run on a remote cloud provider. However, when such a model is deployed on an untrusted cloud, it is of vital importance that the users' privacy is preserved. To this end, we propose Blind Faith -- a machine learning model in which the training phase occurs in plaintext data, but the classification of the users' inputs is performed on homomorphically encrypted ciphertexts. To make our construction compatible with homomorphic encryption, we approximate the activation functions using Chebyshev polynomials. This allowed us to build a privacy-preserving machine learning model that can classify encrypted images. Blind Faith preserves users' privacy since it can perform high accuracy predictions by performing computations directly on encrypted data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.