Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction of Random Geometric Graphs: Breaking the Omega(r) distortion barrier (2107.14323v2)

Published 29 Jul 2021 in cs.CG, cs.SI, math.PR, physics.soc-ph, and stat.ML

Abstract: Embedding graphs in a geographical or latent space, i.e.\ inferring locations for vertices in Euclidean space or on a smooth manifold or submanifold, is a common task in network analysis, statistical inference, and graph visualization. We consider the classic model of random geometric graphs where $n$ points are scattered uniformly in a square of area $n$, and two points have an edge between them if and only if their Euclidean distance is less than $r$. The reconstruction problem then consists of inferring the vertex positions, up to the symmetries of the square, given only the adjacency matrix of the resulting graph. We give an algorithm that, if $r=n\alpha$ for any $\alpha > 0$, with high probability reconstructs the vertex positions with a maximum error of $O(n\beta)$ where $\beta=1/2-(4/3)\alpha$, until $\alpha \ge 3/8$ where $\beta=0$ and the error becomes $O(\sqrt{\log n})$. This improves over earlier results, which were unable to reconstruct with error less than $r$. Our method estimates Euclidean distances using a hybrid of graph distances and short-range estimates based on the number of common neighbors. We extend our results to the surface of the sphere in $\R3$ and to hypercubes in any constant fixed dimension. Additionally we examine the extent to which reconstruction is still possible when the original adjacency lists have had a subset of the edges independently deleted at random.

Citations (2)

Summary

We haven't generated a summary for this paper yet.