Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Cross-Lingual Arabic Information REtrieval (CLAIRE) System (2107.13751v1)

Published 29 Jul 2021 in cs.IR

Abstract: Despite advances in neural machine translation, cross-lingual retrieval tasks in which queries and documents live in different natural language spaces remain challenging. Although neural translation models may provide an intuitive approach to tackle the cross-lingual problem, their resource-consuming training and advanced model structures may complicate the overall retrieval pipeline and reduce users engagement. In this paper, we build our end-to-end Cross-Lingual Arabic Information REtrieval (CLAIRE) system based on the cross-lingual word embedding where searchers are assumed to have a passable passive understanding of Arabic and various supporting information in English is provided to aid retrieval experience. The proposed system has three major advantages: (1) The usage of English-Arabic word embedding simplifies the overall pipeline and avoids the potential mistakes caused by machine translation. (2) Our CLAIRE system can incorporate arbitrary word embedding-based neural retrieval models without structural modification. (3) Early empirical results on an Arabic news collection show promising performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhizhong Chen (12 papers)
  2. Carsten Eickhoff (75 papers)