Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering User-Interpretable Capabilities of Black-Box Planning Agents (2107.13668v3)

Published 28 Jul 2021 in cs.AI

Abstract: Several approaches have been developed for answering users' specific questions about AI behavior and for assessing their core functionality in terms of primitive executable actions. However, the problem of summarizing an AI agent's broad capabilities for a user is comparatively new. This paper presents an algorithm for discovering from scratch the suite of high-level "capabilities" that an AI system with arbitrary internal planning algorithms/policies can perform. It computes conditions describing the applicability and effects of these capabilities in user-interpretable terms. Starting from a set of user-interpretable state properties, an AI agent, and a simulator that the agent can interact with, our algorithm returns a set of high-level capabilities with their parameterized descriptions. Empirical evaluation on several game-based scenarios shows that this approach efficiently learns descriptions of various types of AI agents in deterministic, fully observable settings. User studies show that such descriptions are easier to understand and reason with than the agent's primitive actions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.