Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Who in XAI: How AI Background Shapes Perceptions of AI Explanations (2107.13509v2)

Published 28 Jul 2021 in cs.HC, cs.AI, and cs.CY

Abstract: Explainability of AI systems is critical for users to take informed actions. Understanding "who" opens the black-box of AI is just as important as opening it. We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations. Quantitatively, we share user perceptions along five dimensions. Qualitatively, we describe how AI background can influence interpretations, elucidating the differences through lenses of appropriation and cognitive heuristics. We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design. Carrying critical implications for the field of XAI, our findings showcase how AI generated explanations can have negative consequences despite best intentions and how that could lead to harmful manipulation of trust. We propose design interventions to mitigate them.

Citations (63)

Summary

We haven't generated a summary for this paper yet.