Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chance constrained conic-segmentation support vector machine with uncertain data (2107.13319v2)

Published 28 Jul 2021 in cs.LG and math.OC

Abstract: Support vector machines (SVM) is one of the well known supervised classes of learning algorithms. Furthermore, the conic-segmentation SVM (CS-SVM) is a natural multiclass analogue of the standard binary SVM, as CS-SVM models are dealing with the situation where the exact values of the data points are known. This paper studies CS-SVM when the data points are uncertain or mislabelled. With some properties known for the distributions, a chance-constrained CS-SVM approach is used to ensure the small probability of misclassification for the uncertain data. The geometric interpretation is presented to show how CS-SVM works. Finally, we present experimental results to investigate the chance constrained CS-SVM's performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.