Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogeneous Architecture Augmentation for Neural Predictor (2107.13153v1)

Published 28 Jul 2021 in cs.LG and cs.NE

Abstract: Neural Architecture Search (NAS) can automatically design well-performed architectures of Deep Neural Networks (DNNs) for the tasks at hand. However, one bottleneck of NAS is the prohibitively computational cost largely due to the expensive performance evaluation. The neural predictors can directly estimate the performance without any training of the DNNs to be evaluated, thus have drawn increasing attention from researchers. Despite their popularity, they also suffer a severe limitation: the shortage of annotated DNN architectures for effectively training the neural predictors. In this paper, we proposed Homogeneous Architecture Augmentation for Neural Predictor (HAAP) of DNN architectures to address the issue aforementioned. Specifically, a homogeneous architecture augmentation algorithm is proposed in HAAP to generate sufficient training data taking the use of homogeneous representation. Furthermore, the one-hot encoding strategy is introduced into HAAP to make the representation of DNN architectures more effective. The experiments have been conducted on both NAS-Benchmark-101 and NAS-Bench-201 dataset. The experimental results demonstrate that the proposed HAAP algorithm outperforms the state of the arts compared, yet with much less training data. In addition, the ablation studies on both benchmark datasets have also shown the universality of the homogeneous architecture augmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuqiao Liu (9 papers)
  2. Yehui Tang (63 papers)
  3. Yanan Sun (76 papers)
Citations (22)