Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new recursive spectral Tau method on system of generalized Abel-Volterra integral equations (2107.12693v1)

Published 27 Jul 2021 in math.NA and cs.NA

Abstract: This paper provides an efficient recursive approach of the spectral Tau method to approximate the solution of system of generalized Abel-Volterra integral equations. In this regards, we first investigate the existence, uniqueness as well as smoothness of the solutions under assumption on the given data. Next, from a numerical perspective, we express approximated solution as a linear combination of suitable canonical polynomials which are constructed by an easy to use recursive formula. Mostly, the unknown parameters are calculated by solving a low dimensional algebraic systems independent of degree of approximation which prevent from high computational costs. Obviously, due to singular behavior of the exact solutions, using classical polynomials to construct canonical polynomials, leads to low accuracy results. In this regards, we develop a new fractional order canonical polynomials using M\"untz-Legendre polynomials which have a same asymptotic behavior with the solution of underlying problem. The convergence analysis is discussed, and the familiar spectral accuracy is achieved in $L{\infty}$ norm. Finally, the reliability of the method is evaluated using various problems.

Summary

We haven't generated a summary for this paper yet.