Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Play in $n$-Cluster Games with Zero-Order Information (2107.12648v1)

Published 27 Jul 2021 in cs.GT, cs.SY, and eess.SY

Abstract: We study a distributed approach for seeking a Nash equilibrium in $n$-cluster games with strictly monotone mappings. Each player within each cluster has access to the current value of her own smooth local cost function estimated by a zero-order oracle at some query point. We assume the agents to be able to communicate with their neighbors in the same cluster over some undirected graph. The goal of the agents in the cluster is to minimize their collective cost. This cost depends, however, on actions of agents from other clusters. Thus, a game between the clusters is to be solved. We present a distributed gradient play algorithm for determining a Nash equilibrium in this game. The algorithm takes into account the communication settings and zero-order information under consideration. We prove almost sure convergence of this algorithm to a Nash equilibrium given appropriate estimations of the local cost functions' gradients.

Citations (6)

Summary

We haven't generated a summary for this paper yet.