Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PiSLTRc: Position-informed Sign Language Transformer with Content-aware Convolution (2107.12600v1)

Published 27 Jul 2021 in cs.CV

Abstract: Since the superiority of Transformer in learning long-term dependency, the sign language Transformer model achieves remarkable progress in Sign Language Recognition (SLR) and Translation (SLT). However, there are several issues with the Transformer that prevent it from better sign language understanding. The first issue is that the self-attention mechanism learns sign video representation in a frame-wise manner, neglecting the temporal semantic structure of sign gestures. Secondly, the attention mechanism with absolute position encoding is direction and distance unaware, thus limiting its ability. To address these issues, we propose a new model architecture, namely PiSLTRc, with two distinctive characteristics: (i) content-aware and position-aware convolution layers. Specifically, we explicitly select relevant features using a novel content-aware neighborhood gathering method. Then we aggregate these features with position-informed temporal convolution layers, thus generating robust neighborhood-enhanced sign representation. (ii) injecting the relative position information to the attention mechanism in the encoder, decoder, and even encoder-decoder cross attention. Compared with the vanilla Transformer model, our model performs consistently better on three large-scale sign language benchmarks: PHOENIX-2014, PHOENIX-2014-T and CSL. Furthermore, extensive experiments demonstrate that the proposed method achieves state-of-the-art performance on translation quality with $+1.6$ BLEU improvements.

Citations (28)

Summary

We haven't generated a summary for this paper yet.