Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Neighbor Selection in Multi-agent Networks (2107.12022v2)

Published 26 Jul 2021 in eess.SY, cs.MA, and cs.SY

Abstract: Achieving consensus via nearest neighbor rules is an important prerequisite for multi-agent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This paper examines whether network functionality and performance can be maintained-and even enhanced-when agents interact only with a subset of their respective (available) neighbors. As shown in the paper, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements, can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the "relative rate of change" in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify "favorable" neighbors to interact with. Multi-agent networks with and without external influence are examined, as well as extensions to signed networks. This paper underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multi-agent systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.